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OBSERVATIONS

In Defense of Functional Independence: Violations of Assumptions
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T. Curron and D. L. Hintzman (1995) claim to have shown that the independence assumption
underlying the process-dissociation procedure (L. L. Jacoby, 1991) is not justified. They
argued that correlations between processes at the level of items can result in an underestima-
tion of automatic processes large enough to produce artifactual dissociations between process
estimates. In contrast, the authors show that the effects of extremely high correlations at the
level of items are likely to be trivial, and not differential across conditions. Curran and
Hintzman's dissociations probably reflect violations of boundary conditions for use of the
process-dissociation procedure, rather than violations of independence.

It is important to distinguish between automatic and
consciously controlled memory processes. For example,
although amnesic patients are often unable to consciously
remember previously presented words on direct memory
tests, such as recall or recognition tests, they use the words
on indirect memory tests, such as stem- or fragment-
completion tests, more often than would be expected by
chance (Moscovitch, Vriezen, & Gottstein, 1993). Similar
dissociations are found in people with normally functioning
memory (Roediger & McDermott, 1993). Comparing direct
and indirect memory tests has significantly advanced our
understanding of automatic and controlled processes. How-
ever, performance rarely reflects only one process acting in
isolation; that is, controlled processes often influence perfor-
mance on indirect memory tests (Holender, 1986; Toth,
Reingold, & Jacoby, 1994), and automatic processes affect
performance on direct memory tests (Jacoby, Toth, &
Yonelinas, 1993). The process-dissociation procedure (Ja-
coby, 1991) was designed to separate automatic and con-
trolled memory processes when both are affecting perfor-
mance.

As a brief introduction to the process-dissociation proce-
dure, consider Experiment IB reported by Jacoby et al.
(1993). Subjects studied words under full or divided atten-
tion and then were tested with word stems (e.g., mot for
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motel). For an inclusion test, subjects were instructed to use
the stem as a cue to recall an old word or, if they could not do
so, to complete the stem with the first word that came to
mind. An inclusion test is like a standard test of cued recall
with instructions to guess when recollection fails. Subjects
could complete a stem with an old word either because they
recollected the old word, with a probability of R, or because
the old word came automatically to mind, with a probability
of A. If these two bases for responding are independent, then
inclusion performance equals R + A - RA. For an exclusion
test, subjects were instructed to use the stem as a cue to
recall an old word but not to use recalled words to complete
the stems. That is, subjects were told to exclude old words
and to complete stems only with new words. In this
condition, subjects would complete a stem with an old word
only if the word came automatically to mind without
recollection of its prior presentation: A{\ - R) = A — RA.
The difference between the inclusion and exclusion tests
provides an estimate of the probability of recollection.
Given that estimate, one can compute the probability of an
old word automatically coming to mind: A = Exclusion/
(1 — R). When these equations were applied to the data from
Jacoby et al., results showed that dividing attention signifi-
cantly reduced estimates of recollection (.25 vs. .00) but left
automatic influences almost invariant (.47 vs. .46). That is,
the estimates showed a process dissociation similar to the
task dissociations found between direct and indirect memory
tests (Koriat & Feuerstein, 1976; Parkin, Reid, & Russo,
1990).

Table 1 summarizes results from experiments that have
used the process-dissociation procedure to examine the
effects of attention and of presentation duration on R and A.'

1 Results from Curran and Hintzman's (1995) Experiments 1,4,
and 5 are included in the table, but results from their Experiments 2
and 3 are not. The latter experiments used a recollect-and-exclude
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Table 1
Changes in Recollection and Automatic Influences as a Function of Attention
and Presentation Duration

Source

Jacoby, Toth, and Yonelinas (1993)
Experiment 1A
Experiment IB

Debner and Jacoby (1994)
Experiment 2
Experiment 3
Experiment 4

Jacoby (1996a)
Experiment 1

Related
Unrelated

Jacoby (1996b)
Experiment 2

Curran and Hintzman (1995)
Experiment 1
Experiment 4
Experiment 5

Rx

.20

.25

.83

.75

.62

.32

.09

.44

.24

.32

.40

Ri

.00

.00

.41

.11

.06

.15

.04

.22

.13

.16

.30

Ai

.27

.47

.76

.66

.50

.45

.37

.59

.17

.40

.28

A2

.27

.46

.75

.68

.51

.46

.38

.58

.18

.39

.37

AA
{Rx - Ri)

.20

.25

.42

.64

.56

.17

.05

.22

.11

.16

.10

AA
(Ai - A2)

.00

.01

.01
-.02
-.01

-.01
-.01

.01

-.01
.01

-.09
Note. Scores of zero on the exclusion test were removed before computing estimates; see text for
discussion. Ri and A] refer to full-attention and long-duration conditions; R2 and A2 refer to
divided-attention and short-duration conditions.

The table separates the estimates into conditions associated
with relatively good performance (full attention and long
presentation: R\ and A,) and those with relatively poor
performance (divided attention and short presentation: R2

and A2). The performance measures were word-fragment
completion and stem completion. Note that in each contrast,
the good condition exceeds the poor condition in the
estimate of controlled processes (Rx > R2), yet there is little
or no difference between the estimates of automatic pro-
cesses (Ai vs. A2). Indeed, if the one exception to this pattern
is removed (Experiment 5 from Curran & Hintzman, 1995),
the mean difference between A\ and A2 is -.002. Note
further that the estimates of R and A span a considerable
range, as does the size of Rx — R2; nevertheless, A, and A2

remain nearly identical. We take these results to show that
manipulations of attention and study time can have large
effects on controlled processes but little or no effect on
automatic processes.

The estimates presented in Table 1 are based on the
assumption that the processes estimated by R and A are
functionally independent. Despite the consistency of these
findings, Curran and Hintzman (1995) have recently claimed

procedure in which subjects attempted to give two responses to
each stem: one in a column labeled Remember, another in a column
labeled New. We see this as a variant of the remember-know
procedure used by Gardiner and colleagues (e.g., Gardiner & Java,
1991). Curran and Hintzman allowed only two judgments (remem-
ber and new). Elsewhere (Jacoby, Yonelinas, et al., 1996), we
describe our use of three judgments (remember, know, and new) in
conjunction with stem-cued recall and discuss the relation of
remember-know judgments to the process-dissociation procedure.
Regardless of its exact nature, Curran and Hintzman ls recoliect-and-
exclude procedure is distinct from the inclusion-exclusion proce-
dure and thus does not weigh on interpretation of the results
considered here.

that the independence assumption underlying our use of the
process-dissociation procedure is unlikely to have been met.
They argued that correlations between processes at the level
of items violate the independence assumption, producing a
bias in the estimation of automatic processes. Further, they
argued that the bias is differential across conditions such that
automatic processes are underestimated to a greater degree
as conscious recollection increases. The result of this
increasing underestimation was said to be artifactual (or
"paradoxical") dissociations that reflect violations of the
independence assumption rather than true dissociations
between controlled and automatic processes.

Curran and Hintzman's (1995) arguments predict that an
advantage of A2 (divided attention or short presentation)
over A] (full attention or long presentation) should emerge
and increase in size as the difference between Rx and R2 (A/?)
increases. That is, there should be a negative correlation
between change in R (A/?) and change in A (AA). Against
that prediction, the correlation between A& and AA for the
studies presented in Table 1 is in the wrong direction and
near zero (.13).

Curran and Hintzman (1995) reported significant item-
and subject-based correlations between estimates of R and A
and claimed that these correlations render the process-
dissociation procedure "invalid.*1 But if this is the case, how
could invariances as complete as those shown in Table 1
have been obtained? One answer to this question is that,
contrary to claims by Curran and Hintzman, estimates
derived from the process-dissociation procedure are quite
robust with respect to item-level correlations. In fact, in the
next section, we show that even extremely high item
correlations generally have only a small effect on estimated
A. Of more importance, we show that the effect that can
occur is unlikely to be differential across conditions. But if



486 OBSERVATIONS

Table 2
Example to Show the Effect of Aggregation Over Correlated R and A Values

1
2
3
4

Item

True
Estimate

Inclusion

.36

.60

.80

.96

.68

.68

Short presentation

Exclusion

.32

.44

.56

.60

.48

.48

R

.04

.16

.24

.36

.20

.20

A

.333

.524

.737

.938

.633

.600

Inclusion

.52

.70

.85

.97

.76

.76

Long presentation

Exclusion

.24

.33

.42

.45

.36

.36

R

.28

.37

.43

.52

.40

.40

A

.333

.524

.737

.938

.633

.600

Note. True values are the means of the values for the four items; for the estimate values, R and A are
computed from the mean inclusion and exclusion scores. R ~ Inclusion — Exclusion; A —
Exclusion/(1 - R).

item correlations do not produce large, differential biases in
process estimates, then what explains the "artifactuaT*
dissociations obtained by Curran and Hintzman? We believe
Curran and Hintzman did not meet boundary conditions for
applying the process-dissociation procedure. Those bound-
ary conditions are the avoidance of floor effects and the
participant's use of direct retrieval, as opposed to generate-
recognize, as a strategy for recalling previously presented
items. We elaborate on these points later in the article. First,
we show how and why estimates gained from the process-
dissociation procedure are relatively unaffected by item-
based correlations. We begin with an example of correlation
without artifactual dissociation and then further explain the
arguments that gave rise to that example.

Correlation Without Artifactual Dissociation

The data summarized in Table 1 are mean values of R and
A that were computed individually for each subject. When
estimates are computed in this way, any correlation between
measures across subjects is irrelevant for assessing the
tenability of the assumption of independence. However,
because the calculation of process estimates requires aggre-
gating over items within subjects, correlations between R
and A across items could result in estimates that do not
reflect the true relation between processes.

Table 2 illustrates the effect of aggregating across items to
estimate R and A. The example supposes that we know R and
A for each of four items and compares that "true" R and A
with estimates gained by aggregating across items. Consider
the short-presentation data in the table. The true values are
the actual means of the four items; the "estimates" are the
results derived from the aggregated data (i.e., the mean
inclusion and exclusion scores). Estimating R from the
observed means (inclusion minus exclusion) gives .20,
which is also the true value, but the estimated value of A
(.600) is less than the true value (.633). The hidden covariate
(cov) is the correlation between R and A across items within
this subject. The amount of the underestimation of A (.033)
is not overwhelming, even though the correlation is very
high (.996); the respective standard deviations of ft and A are
. 117 and .227. As described below, the amount of underesti-
mation is equal to cov/(l — /?), where cov = r * SDR * SO*.

What is the effect on the underestimation of A if, for each
item, increasing study time produces a proportionate in-
crease in R but leaves A unchanged? Since Ebbinghaus
(1885/1964), learning curves have usually been found to be
exponential, meaning that the increase in learning is a
constant proportion of the amount remaining to be learned.
To produce a long-presentation condition, we increased R
for each item in die short-presentation condition by an
amount that is a constant proportion (x) of the amount of
possible increase in R; x(l — R). In the present example, x =
.25, and so, R} in the short-presentation condition (.04)
increases by .24, that is, .25 * (1 - .04), to produce .28 for
the long-presentation condition and so on for each item.
New probabilities of inclusion and exclusion were computed
from the proportionately increased Rs and unchanged As.
The effects of a proportionate increase in R are shown by
comparing estimates from the short-presentation condition
with those from the long-presentation condition in Table 2.
Although R and A are almost perfectly correlated, a propor-
tionate increase in R does not change the estimates of
A—that is, correlation does not produce an artifactual
dissociation when a manipulation produces a proportionate
increase in R for each item.2

So, as argued by Curran and Hintzman (1995), positive
correlations between processes at the item level can produce
an underestimation of estimated automatic processes (A),
but the underestimation is negligible, even when the correla-
tion between R and A is extremely high. Of more impor-
tance, the underestimation is not differentia] across condi-
tions, producing a proportional increase in R. Of course, it is
possible that learning is not proportional, but rather in-
creases linearly; if so, the underestimation in A would be
differential across conditions (see below). But would the
differential underestimation be enough to produce artifactual
dissociations of the magnitude reported by Curran and

2 To understand why proportional increase of R does not
influence estimated A, consider the equation for estimating A:
Exclusion/(1 - R) = A(l - R)f(l - R). Proportional increase in R
results in a new value of R equal to R + x(\ - R), so that the new
value of (1 - R) is (1 - x)(\ - R). So, proportional increase of R
multiplies both the numerator and the denominator by (1 - x) and
has no affect on the estimate of A.



OBSERVATIONS 487

Hintzman (1995)? To answer this question, one needs a
method for calculating the size of the underestimation. We
provide such a method below in the context of a closer
examination of Curran and Hintzman's claims concerning
the effects of correlations on estimates of R and A.

Estimation Bias Caused by Correlated Processes:
Curran and Hintzman (1995) as a Case Study

Curran and Hintzman (1995) manipulated presentation
duration in their attempts to produce artifactual dissocia-
tions. An artifactual dissociation is said to occur if A
decreases because of an increase in R, rather than because of
an actual decrease in the contribution of automatic pro-
cesses; such a finding would represent a violation of the
independence assumption. Comparisons of direct and indi-
rect memory tests (e.g., Greene, 1986; Jacoby & Dallas,
1981) lead one to expect that in the range across which
presentation duration was varied (1 s vs. 10 s), there should
have been an effect on controlled processes but not on
automatic processes. That is, the predicted process dissocia-
tion for varying study duration is the same as that obtained
by Jacoby et al. (1993) when attention was manipulated.
However, Curran and Hintzman found that increasing study
time produced the expected increase in R but "paradoxi-
cally" decreased A. They argued that the decrease in A was
an artifact of the estimation procedure produced by a
correlation between processes at the item level.

Could process correlations bias estimates enough to result
in artifactual dissociations? Curran and Hintzman (1995)
argued that they could because of a sampling bias inherent in
the process-dissociation procedure.3 We agree that a positive
correlation between R and A can result in an underestimation
of automatic processes. However, instead of describing the
underestimation of A as reflecting a sampling bias due to
conditionalization, we describe the underestimation as reflect-
ing covariance. An important advantage of describing the
effects of correlation in terms of covariance is that it allows
one to calculate the amount of underestimation that could be
produced by correlation. Knowing the maximum amount of
underestimation is important because it tells one how
problematic correlations are for interpreting estimates gained
from the process-dissociation procedure. In fact, as we
showed above and elaborate below, the magnitude of
underestimation is generally not sufficient to produce artifac-
tual dissociations. Another advantage of emphasizing covari-
ance is that it allows one to make contact with related issues
in the literature—issues such as Simpson's Paradox (Hintz-
man, 1980) and the statistical relation between different tests
of memory (Flexser & Tulving, 1978). As described in the
next section, claims about estimation bias caused by a
violation of stochastic independence should be evaluated in
the context of arguments about the impossibility of assessing
stochastic independence.

The major advantage of emphasizing covariance is that it
focuses attention on the intersection between the two
processes (i.e., the joint probability of recollection and
automatic processes: RA). The effect of positive correlation
is to increase the intersection by a quantity that is equal to

the covariance, and it is this increase that provides a way of
quantifying the effect of correlation on estimates of R and A.
Focusing on effects of conditionalization, as Curran and
Hintzman (1995) have, might reflect the particular algebraic
form that they chose to write the independence equations.
Writing the equation for the inclusion condition as R +
A (1 — R) suggests thinking in terms of conditional probabili-
ties: Because of a sampling bias produced by positive
correlation, the joint probability of A and recollection
failure—that is, A(l - R)—is smaller than it would be if A
and R were uncorrelated. However, writing the same equa-
tion as R + A - RA changes the focus to the intersection
(RA) and to the effect correlation has on the size of the
intersection: If R and A are positively correlated, the joint
probability of automatic processes and recollection success
will be larger than estimated by RA. Of course, if correlation
influences RA, it must also influence A(l - R). Indeed, the
problems of bias because of effects on conditional probabil-
ity and bias because of effects on covariance are one and the
same.

Assessing Stochastic Independence:
Simpson's Paradox

Curran and Hintzman (1995) hold that a lack of stochastic
independence, directly evidenced by significant correlation
between R and A at the item level, invalidates the process-
dissociation procedure. A standard definition of stochastic
independence is: P(A D B) = P(A)P(B). Rejecting stochas-
tic independence might be thought to be a simple matter of
showing that the preceding equality does not hold. However,
Hintzman (1980) argued that correlation, as well as other
measures relying on contingency tables, does not provide a
means of testing stochastic independence because of the
possibility of hidden covariates. When two or more contin-
gency tables are collapsed into one, the resulting table may
show a relationship between variables that differs from that
shown by any of the original tables (Simpson's paradox).
Although underlying processes are correlated, results gained
by collapsing across contingency tables can show zero
correlation. Also, aggregated results can show a nonzero
correlation although underlying processes are stochastically

3 To illustrate the effects of sampling bias, Curran and Hintzman
(1995) presented a hypothetical bivariate distribution of values of R
and A and drew a vertical line over the R axis to depict a criterion
on R; items to the right of the line were said to be recollected,
whereas those to the left were said to be not recollected (see their
Figure 1). However, to represent use of the process-dissociation
procedure, one would have to add probability values to their axes
(the axes were not labeled in their figure). Once their axes are
labeled with probabilities, it is clear that a criterion on R is
inappropriate. For example, consider an item whose value for both
R and A is .80. Although plotted in their Figure 1 as always being to
the right of the criterion and therefore recollected, on 20% of the
occasions the item will be on the left of the criterion and therefore
not recollected. Moreover, on those occasions when the item is not
recollected, its value of A (.80 in this case) will contribute to the
estimate of A. Because the process-dissociation procedure deals
with probabilities, no fixed criterion can be drawn to separate items
into the deterministic states of recollected and not recollected.
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independent. For example, Hintzman (1980, Table 4) demon-
strated that goodness of encoding as a hidden covariate can
produce a correlation between recognition and recall perfor-
mance in results summed across contingency tables for good
and poor encoding, each of which shows independence. A
similar demonstration was provided for the effects of trace
strength as a hidden covariate (Hintzman, 1980, Table 2).

It is futile to attempt to escape the interpretive problems
produced by Simpson's paradox. This is true because one
must collapse across something (items or subjects) to
analyze results. Measuring the abilities that are of interest
(e.g., recall and recognition) separately for each subject
avoids the risk that subject differences act as a hidden
covariate but leaves the possibility that aggregating across
items allows differences among items to be a hidden
covariate. Covariance produced by such item differences
cannot be truly assessed. Collapsing across subjects to
measure abilities separately for each item allows subject
differences to act as a hidden covariate and can produce a
false correlation—a correlation that is not descriptive of that
between recognition and recall at the level of items for
individual subjects. That is, just as illustrated by Hintzman
(1980) for effects of item differences as a hidden covariate,
subject differences as a hidden covariate can produce the
result of a positive correlation at the item level collapsed
across subjects, although the two abilities of interest are
independent at the Subject X Item level. Unfortunately,
correlation at the Subject X Item level cannot be measured
because at that level one has only a single observation of a
particular subject's performance on a particular item.

As shown in Table 2, it is the aggregation of results across
items that creates the possibility that a correlation at the
Item X Subject level can bias process estimates. If R and A
could be measured separately for each item within each
subject, then correlation could not bias our estimates—just
as the correlation between height and weight in the overall
population cannot bias the measurement of those dimen-
sions when they are obtained separately for a particular
individual. Unfortunately, the "true" values in Table 2 are
impossible to measure, because one must aggregate across
something (subjects or items) to compute any estimates of R
and A. Doing so opens the possibility that A estimated using
aggregated data will not reflect the true A because of a
correlation at the level over which responses are aggregated.

Curran and Hintzman (1995) reported the correlation
between R and A at the item level (aggregating results across
subjects and conditions) and at the subject level (aggregating
across items and conditions). They ignored the possibility of
Simpson's paradox by taking those correlations as "direct
evidence" against the stochastic independence of R and A.
Perhaps the discrepancy between the correlations reported
by Curran and Hintzman and the consistency of dissocia-
tions shown in Table 1 is best resolved by dismissing their
correlations as false because of Simpson's paradox. That is,
at the Item X Subject level, R and A might be stochastically
independent, and the finding of significant correlations at
higher levels might reflect the effects of aggregation.

Because of Simpson's paradox, it is impossible to prove
or disprove stochastic independence at the Item X Subject

level. For the same reason, the true correlation between R
and A at that level cannot be measured. However, the
process-dissociation procedure is not meant to prove stochas-
tic independence. Rather, violations of stochastic indepen-
dence are of interest only to the extent that they bias
estimates in a way that is differential across conditions. For
our discussion about the magnitude of estimation bias
caused by correlated processes, we accept Curran and
Hintzman's (1995) assumption that the unmeasurable corre-
lation at the Item X Subject level is directly evidenced by
the correlation at the item level, aggregated across subjects.
As we show, estimation bias caused by correlated processes
would not produce Curran and Hintzman's results even if the
unmeasurable correlation was higher than estimated from
aggregated results.

Effects of Nonzero Covariance

When introducing the process-dissociation procedure,
Jacoby (1991) noted that the equations used were based on
the assumption that covariance between automatic and
controlled influences was zero. Curran and Hintzman's
(1995) work was useful in leading us to examine the effects
of nonzero covariance. It is the covariance between R and A
that is responsible for the sampling bias they describe. If R
and A are correlated across items within subjects, aggregat-
ing across items to estimate R and A will result in an
intersection between the two processes that is larger than if
covariance was zero, and consequently, A will be underesti-
mated. Describing the effects of correlation in terms of
covariance allows one to derive an equation that can be used
to calculate the magnitude of underestimation. That equa-
tion, described in detail in the Appendix, follows directly
from the definition of covariance. Briefly, combining the
definition of covariance in terms of correlation (i.e.,
r * SDR * SDA) with the equation for the error in estimation
of A produced by covariance, that is, covl{\ — R) (see
ar>ove), yields:

True A - Estimated A = covl{\ - R)

= r*SDR*SDAf(l -R) (1)

In the next section, we illustrate the effect of covariance in
an example involving correlated item differences in pairs of
biased coins. This example is meant to give the reader an
intuitive grasp of how, although correlated, R and A can be
functionally independent.

Correlated but Functionally Independent:
A Coin Example

Suppose you are asked to make a series of bets on whether
tossing a pair of coins will yield at least one head. Call this
the inclusion bet. Assume there are two pairs of coins (RY

and Ai, R2 and A2), but you do not know from which pair the
two tosses will come on any one bet. You do know that on
average the probability of a head is .5 for the first coin tossed
(R\ or R2) and .5 for the second coin tossed (Aj or A2).
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Consequently, you might reason that the probability of
obtaining at least one head is .75 [R + A(l — R) =
R + A — AR = .75]. However, you are further told that the
coins are biased and that the probability of a head for the two
coins is perfectly correlated over the pairs. For one pair, the
probability of a head is .8 for both coin R and coin A,
whereas for the other pair, the probability of a head is .2 for
each coin.

Despite the correlation, the coins in a pair are functionally
independent because the probability of a head on coin A in
no way depends on whether a head or a tail is obtained on
coin R. However, because of the correlation, the probability
of getting two heads, the intersection (RA), is larger than it
would be if the coins were uncorrelated across pairs (zero
covariance). The probability of obtaining a head on both
coins in Pair 1 is .8 * .8 = .64, whereas that probability for
Pair 2 is .2 * .2 = .04. Averaging across the two pairs, the
probability of the intersection is .34 (.68/2), which would
compare with the intersection of .25 if covariance were zero.
That is, covariance has increased the probability of the
intersection by .09.

What effect does this covariance have on the probability
of winning the inclusion bet? The effect is to decrease the
probability of winning the inclusion bet. If one aggregates
across the two pairs of coins, the positive correlation
between coins in a pair will result in an underestimation of
the probability of obtaining at least one head, as compared
with the case for which R and A are uncorrelated. This is true
because coin A will contribute to the probability of obtaining
at least one head only when R fails (i.e., its being flipped will
matter only when R returns a tail): R^ will not return a head
less often than will R2 and so will produce the "sampling
bias" identified by Curran and Hintzman (1995). In contrast
with the probability of .75 that would be obtained if the coins
in a pair were uncorrelated, the probability obtained by
averaging across pairs is only .66. (It is the correlation that is
important for this underestimation, not the fact that the coins
are biased. To see this, do the same computations with the
following pairs: .8 and .8; .8 and .2; .2 and .2; and .2 and .8.)
Note that the difference produced by covariance (.75 - .66)
is .09.

The same amount of underestimation occurs if the bet is
changed to the probability of obtaining a head on coin A and
a tail on coin R (the exclusion bet): A(l - R) — A - RA. If
coins in a pair are uncorrelated, the probability of a tail on
coin R and a head on coin A is .25. However, because of
covariance, this probability averaged across pairs drops to
.16. The underestimation produced by correlation within
pairs for the inclusion and exclusion bets is the same (.09)
because computing the probability of a win involves subtract-
ing the intersection, which is larger than it would be if
correlation were zero. The increase in the magnitude of the
intersection produced by the correlation within pairs is equal
to the covariance between R and A. Covariance is defined as
r * SDR • SDA. For our example, correlation is equal to 1.0,
and the standard deviation for both R and A is .3; therefore,
covariance is equal to .09.

Suppose we provided the probabilities of winning the
inclusion and exclusion bets and asked you to estimate the
average probability of a head on the R and A coins. R,

estimated as the difference between the probability of
winning the inclusion (.66) and exclusion (.16) bets, would
be .50, just as it would be if the coins in a pair were
uncorrelated. That is, correlation between R and A does not
influence the estimate of the average R. However, the
correlation between R and A will produce an underestimate
of A. ifR and A were uncorrelated, Exclusion/(1 - R) would
correctly estimate the average A as being .50. Because of the
correlation, however, A is underestimated as being .32, that
is, Exclusion/(1 -/?)== .16/(1 - .5) = .32. The magnitude
of underestimation is .18, which (from Equation 1) is equal
to the covariance of R and A divided by (1 - R), that is,
.09/(1 - .5) = .18.

The amount of underestimation is large because of the
perfect correlation and high standard deviations that we
chose for illustrative purposes. In most instances, as shown
below, the difference between the true and estimated A is
much smaller. More important for assessing the possibility
of artifactual dissociations is whether the underestimation of
A differs across conditions that differ in R. To answer that
question, one must make an assumption about the manner in
which R increases across conditions, as we did above in
Table 2.

Were Curran and Hintzman's (1995) Artifactual
Dissociations Caused by Correlation?

Using the inclusion-exclusion procedure, Curran and
Hintzman (1995) found artifactual dissociations—increases
in R accompanied by decreases in A—in their Experiments 1
and 5. They interpreted those dissociations as meaning that
because of item-level correlations, A is progressively under-
estimated as R increases. Curran and Hintzman did not
explicitly state an assumption about the form of increase in
R, but their Figure 1 depicts R as increasing by a constant
across conditions. Adding a constant leaves unchanged the
standard deviation of both R and A, as well as the correlation
between the two. Consequently, increasing R by a constant
(i.e., a linear increase in R) results in a progressive underes-
timation of A because the only change in the equation
describing the amount of underestimation (Equation 1) is in
the denominator (i.e., 1 - R). Of course, the increase in R
cannot be linear for high values of R, because R cannot
exceed 1.0, but the increase could be linear from low to
intermediate values.

Assuming that the increase in R is linear across condi-
tions, can the increased underestimation of A be big enough
to account for the artifactual dissociation found by Curran
and Hintzman (1995) in their Experiment 1? We used
Equation 1, along with the measures of correlation and
standard deviation obtained by Curran and Hintzman, to
calculate the effects of correlated item differences. Pooling
across the 1-s and 10-s conditions (see their Table 4), the
standard deviations are .19 for R and .145 for A. The
correlation between R and A was .26 (their Table 5). For the
1-s condition, R was .17 (their Table 3). With Equation 1, the
correlation between R and A would result in A being
underestimated by .0086 in the 1-s condition, that is,
.26 * .19 * .145/(1 - .17). Forthe 10-s condition, the numera-
tor would be the same, but the denominator would reflect the
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higher probability of recollection (.32) for that condition.
The underestimation of A for the 10-s condition would be
.0105. The difference in underestimation for the 10-s and 1-s
conditions, then, would be .0019. That is, the absolute
underestimation of A produced by correlated item differ-
ences is tiny, and the differential underestimation for condi-
tions is even smaller—much smaller than the significant .04
difference obtained by Curran and Hintzman.

The artifactual dissociation obtained by Curran and
Hintzman (1995) in their Experiment 5 was also much larger
than could be produced by differential underestimation of A
resulting from covariance. For that experiment, R was .33
for the 1-s condition and .47 for the 10-s condition. The
correlation between R and A was .55, and standard devia-
tions for R and A were .31 and .24, respectively. Because of
the higher correlation and standard deviations, the absolute
underestimation of A would have been much larger in their
Experiment 5 than in their Experiment 1. The underestima-
tion of A would be .061 for the 1 -s condition and .077 for the
10-s condition. The .016 difference in the underestimation of
A produced by correlated item differences is much smaller
than the significant .12 difference in A obtained by Curran
and Hintzman. Thus, the effect on A obtained by Curran and
Hintzman is much larger than what one could expect from
covariance alone.

Our calculations rest on the assumption that the unmeasur-
able correlation at the item level for each subject is the same
as the correlation gained by aggregating across subjects. It is
unlikely that a larger correlation within subjects is respon-
sible for the discrepancy between the magnitude of observed
dissociations and calculated effects of covariance. For
Curran and Hintzman's (1995) Experiment 5, even a correla-
tion of 1.0 between R and A would not produce the
magnitude of the paradoxical dissociation that they ob-
served. Given the magnitude of the effect on R in that
experiment, the standard deviations of R and A, and the
assumption of a linear increase in R, a correlation of 1.0
between R and A would result in an increase of .03 in
underestimation of A over levels of/?, which is much smaller
than the observed difference of. 12.

Furthermore, Curran and Hintzman's (1995) item-based
estimates combine with their subject-based estimates to
reject the hypothesis that correlations caused artifactual
dissociations. The correlation between R and A for item-
based estimates, which is described above, was positive,
whereas that for subject-based estimates was negative.
Extending Curran and Hintzman's arguments for the efTect
of correlation at the item level on subject-based means, the
negative correlation between R and A at the subject level
should have resulted in an overestimation of A on item-
based means. Just as a positive correlation produces an
underestimation of A, a negative correlation produces an
overestimation of A. Because the direction of correlation
and, thus, the direction of bias was opposite at the item and
subject levels (see their Table 5), one must predict that
dissociations caused by correlation were opposite for item-
and subject-based estimates. However, for each of Curran
and Hintzman's experiments showing an artifactual dissocia-
tion, the pattern of effects for estimates was the same for
item- and subject-based means. That is, rather than opposite

effects, the dissociations were the same regardless of
whether the correlation was positive or negative.

Reasons for Artifactual Dissociations

As shown above, correlated item differences would be
extremely unlikely to produce differential underestimation
of A of a magnitude necessary to produce the artifactual
dissociations obtained by Curran and Hintzman (1995).
Also, as noted earlier, the results in Table 1 contradict the
inverse relation between A/? and AA that would result if
estimation bias were caused by a linear increase in R. What
did produce Curran and Hintzman's artifactual dissocia-
tions? We think it likely they were produced by violating the
boundary conditions set by Jacoby et al. (1993) for use of the
process-dissociation procedure.

Zeros in Exclusion Performance

Jacoby et al. (1993) illustrated the effect of zeros in
exclusion performance on estimates of A. Their Experiment
1A differed from their Experiment IB, described earlier,
only in the baseline completion rate (i.e., the probability of
completing word stems with target words that were not
studied earlier). For Experiment 1A, the baseline was .14,
whereas for Experiment IB it was .35. The results of
Experiment 1A showed a large effect of full versus divided
attention on estimates of recollection (.20 vs. .00) and a
small effect in the opposite direction on estimates of
automatic processes (.21 vs. .27), However, some subjects in
the full-attention condition had no errors on the exclusion
test. By the equation used to estimate automatic processes,
exclusion^ 1 — /?), a score of zero on the exclusion test
results in an estimate of zero for automatic processes. The
probability of a zero in exclusion was larger for the full- than
for the divided-attention condition, which is not surprising
because recollection was higher in that condition.

When estimates from Experiment 1A were recomputed
without zero scores, A was identical for the full- and
divided-attention conditions (.27). Experiment IB used
stems that had a higher baseline completion rate to avoid
zeros and to thereby avoid any possible bias that might result
from their removal. Results of Experiment IB showed that
full versus divided attention had a large effect on recollec-
tion (.25 vs. .00) but essentially no effect on estimated A (.47
vs. .46). That is, results obtained by using stems with a
higher baseline to avoid zeros replicated the results pro-
duced by removing zeros.

Curran and Hintzman's (1995) Experiments 1 and 4
replicate those reported by Jacoby et al. (1993). In Curran
and Hintzman's Experiment 1, the baseline completion rate
was .12, and A computed with the zeros included showed
that A decreased significantly from the short-duration to the
long-duration condition (.16 vs. .12), but when zeros were
removed, estimates were near identical for the two condi-
tions (.18 vs. .17). In their Experiment 4, they used stems
with a higher baseline completion rate (.30) to reduce the
likelihood of zeros for the exclusion test. Results from their
Experiment 4 showed that A was nearly identical for the
short-duration and long-duration conditions (.36 vs. .35).
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When zeros were removed, the small difference between
conditions was reversed (.39 vs. .40).

Despite the parallel between their results and results
reported by Jacoby et al. (1993), Curran and Hintzman
(1995) argued against removing zeros. They suggested that
doing so forces the selection of subjects whose recollection
is poor or who did not correctly follow the inclusion-
exclusion instructions. However, if the in variance in A found
with zeros removed was because of a subject-selection
artifact, that invariance should not be found when zeros are
avoided by increasing baseline performance. Using a manipu-
lation of study time identical to that used by Curran and
Hintzman, we have replicated their finding that avoiding
floor effects eliminates the artifactual dissociation (Jacoby,
1996b). To avoid zeros in exclusion performance, we used
items with an even higher base rate than those used by
Curran and Hintzman in their Experiment 4 and increased
the length of lists to allow more opportunity for errors in the
exclusion condition. For our experiment, the base rate was
.40. The only other differences in procedure between our
experiment and those of Curran and Hintzman were that our
test instructions encouraged direct retrieval (see below) and
that we required subjects to pronounce words aloud during
study.

Results of our experiment replicated those of Curran and
Hintzman *s (1995) Experiment 4 by showing no effect of
presentation duration on estimated automatic influences;
estimates of A for the 1-s and 10-s conditions were .58 and
.59, respectively. Estimates of R were .22 and M—a
difference in recollection that is larger than that found by
Curran and Hintzman. When zeros are avoided by increasing
baseline, results agree with those produced by removing
zeros. We cannot offer a general rule for dealing with zeros
beyond saying that they should be avoided as floor effects
should be avoided in other domains.

Misunderstanding of Exclusion Instructions?

Curran and Hintzman (1995), along with others (Graf &
Komatsu, 1994), have suggested that subjects' misunderstand-
ing of exclusion instructions may be a factor in producing
dissociations between estimates of controlled and automatic
processes. Although subjects' understanding of instructions
is obviously an important issue, equally important is how
subjects comply with instructions; mat is, whether subjects
use a generate-recognize strategy for recall, as opposed to
the direct-retrieval strategy that is a prerequisite for use of
the independence equations. We first consider the general
issue of subjects1 understanding of instructions. Next, we
discuss the importance of instructions in producing a
retrieval strategy necessary for functional independence and
findings of invariance.

Curran and Hintzman (1995) dismissed the results of their
Experiment 4 on the grounds that subjects in that experiment
failed to understand exclusion instructions. Their evidence
for failure in understanding exclusion instructions was that a
number of subjects produced old items with a probability of
.50 or above even in the long-presentation condition for
which R was high. However, a high probability of mistak-
enly producing old words does not necessarily reflect a

failure of instructions but could be due to a high base rate
idiosyncratic to the items used for a particular combination
of condition and subject. Understanding of instructions is
better measured as the difference between performance on
inclusion and exclusion tests. For example, if probabilities
were .95 and .55 for the inclusion and exclusion tests, one
would conclude that the subject understood instructions
despite the high probability for the exclusion test. In more
recent experiments (e.g., Jacoby, Jennings, & Hay, 1996),
we have used an explicit check on subjects' understanding of
exclusion instructions by varying the spacing between
presentation of an item and its exclusion test. If people
successfully exclude items that are tested immediately after
being presented for study, subsequent exclusion errors at
wider spacings cannot be attributed to misunderstanding of
instructions. Dissociations found using this new procedure
are the same as those in our earlier experiments.

Curran and Hintzman (1995) implied that our previous
findings of invariance in A (some of which are shown in
Table 1) reflect a delicate balance between artifactual
dissociations and subjects not understanding instructions.
Such a delicate balance seems implausible, however, be-
cause failures to understand instructions would have to
become more likely in conditions with high R to offset the
larger underestimation of A supposedly caused by correlated
processes. Against this possibility, conditions with high R
are almost universally accompanied by more accurate exclu-
sion performance, which requires mat instructions were
understood.

Effects of Instructions on Recall Strategy: Direct
Retrieval Versus Generate-Recognize

Our work using the process-dissociation procedure has
been based on the assumption that memory performance can
reflect the independent contributions of automatic and
controlled processes, a model we have referred to as direct
retrieval. A direct-retrieval model is consistent with demon-
strations of encoding specificity that have been used to argue
against generate-recognize accounts of cued recall (see
Tulving & Thomson, 1973). In our version of this model,
retrieval cues are combined with information about a prior
context in an attempt to recollect specific target items.
Automatic retrieval of target items may also occur but is
assumed to operate independently of intentional retrieval.
Support for the model is provided by showing that variables
traditionally associated with the concept of control have
large effects on estimated conscious recollection but few or
no effects on estimated automatic processes. Variables
producing this pattern include divided versus full attention
during study (Jacoby et al., 1993; see Table 1), fast versus
slow responding at test (Toth, 1996; Yonelinas & Jacoby,
1994), and aging (Jacoby, Jennings, et al., 1996; see Jacoby,
Yonelinas, & Jennings, 1996, for a review).

Comparisons between direct and indirect memory tests
also provide converging evidence for our independence
model. If indirect memory tests provided process-pure
measures of automatic influences and if automatic and
controlled influences are independent, one would expect
estimated A to converge with performance on indirect
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memory tests. Under conditions that are least likely to result
in conscious contamination of indirect memory tests, there is
a close match between estimated A and indirect memory test
performance (Jacoby, Yonelinas, et alM 1996; Reingold &
Goshen-Gottstein, 1996; Toth et al., 1994). If A were badly
underestimated because of correlated processes, such a close
match should be impossible to obtain.

We believe that the results cited above establish that direct
retrieval is a tenable model for cued recall. However, direct
retrieval is not the only way cued recall can be accom-
plished. Jacoby and Hollingshead (1990; see also Bahrick,
1979) suggested that subjects may often perform cued-recall
tests by automatically generating words in response to
retrieval cues and then subjecting those words to a con-
sciously controlled recognition check for their prior presen-
tation. For this model, controlled and automatic processes
cannot be completely independent because recognition fol-
lows and thus is dependent on successful generation. Thus,
the choice between direct retrieval and generate-recognize
as models of cued recall is the same as that between an
independent and redundancy relation between controlled
and automatic uses of memory (see Jacoby, Yonelinas, et al.,
1996; Jones, 1987).

Our goal in using the process-dissociation procedure has
been to arrange conditions that encourage direct retrieval
and, thereby, meet the independence assumption. We have
been interested in direct retrieval because it is this strategy
that allows one to examine the role of intent in bringing an
item to mind. Nevertheless, generate-recognize is also a
reasonable strategy for cued recall, and its use may underlie
"artifactual dissociations" such as those reported by Curran
and Hintzman (1995). Of course, such dissociations are not
truly artifactual but, rather, reflect the inappropriate applica-
tion of independence (direct retrieval) equations to data for
which a redundancy relation holds because subjects rely on a
generate-recognize strategy (or a mixture of strategies).

What factors influence subjects' choice of strategy, and
how can one determine which strategy is being used? Most
important, perhaps, are the instructions given at test. Critics
of the process-dissociation procedure (e.g., Graf & Kom-
atsu, 1994) have focused on subjects' understanding of the
exclusion instructions; however, we believe the inclusion
instructions are as important as the exclusion instructions for
eliciting a direct-retrieval strategy for recall and for thus
finding invariance in A across levels of R to support the
independence assumption. We have instructed subjects to
use stems as cues for earlier studied words and to either use
or withhold recalled words dependent on whether inclusion
or exclusion instructions were given.

Suppose our instructions were changed such that subjects
did not use direct retrieval for the inclusion test but simply
completed stems with the first words that came to mind, just
as they would for an indirect test of memory. Further, for the
exclusion test, suppose they rejected generated completions
that were recognized as old. The result of this generate-
recognize strategy would be that inclusion performance
would not be influenced by study duration (e.g., Greene,
1986; Jacoby & Dallas, 1981). Moreover, any improvement
in exclusion performance—produced, for example, by in-
creasing study duration—would result in an artifactual

dissociation because improved exclusion performance in
combination with unchanged inclusion performance neces-
sarily results in an increase in R and a decrease in A. Such a
dissociation would reflect the process dependency between
generation and recognition.

We have done a series of experiments to show that
instructions that encourage a generate-recognize strategy
produce the pattern of results described above, whereas
direct-retrieval instructions produce effects on R but leave A
invariant across manipulations of full versus divided atten-
tion and short versus long study duration (Jacoby, 1996b).
As noted by Curran and Hintzman (1995), their artifactual
dissociations may have occurred because subjects used a
generate-recognize strategy. Although the instructions for
their Experiment 5 were apparently the same as for their
Experiment 4, they "worked with" subjects in Experiment 5
during practice in an attempt to ensure that subjects under-
stood instructions. The change in procedure may have
encouraged subjects to use a generate-recognize strategy.

Results of Curran and Hintzman's (1995) Experiment 5
show the signature of a generate-recognize strategy. Al-
though "working with" subjects did increase the accuracy of
exclusion performance in Experiment 5 as compared with
Experiment 4 (particularly for the 10-s study condition), the
results also changed for the inclusion test condition. The
substantial advantage in inclusion performance for the 10-s
over the 1-s condition observed in Experiment 4 (.60 vs. .49)
largely disappeared in Experiment 5 (.59 vs. .55). This
reduced effect of study duration on inclusion test perfor-
mance would be expected if the change in procedure
resulted in subjects1 adopting a generate-recognize strategy
and, thereby, largely treating the inclusion test as an indirect
memory test.

Another signature of a generate-recognize strategy—
differences in baseline performance—was also obtained in
Curran and Hintzman's (1995) Experiment 5. Baseline was
significantly lower for the exclusion test than for the
inclusion test. There are two ways that use of a generate-
recognize strategy could produce this difference. First,
falsely recognized words might be mistakenly rejected on
the exclusion test, whereas false recognition would have no
influence on inclusion test performance (Jacoby, 1991).
Second, greater reliance on recollection might effectively
reduce the amount of time available for generating a
completion for the exclusion test, as compared with the
inclusion test. In contrast to results of their Experiment 5,
Curran and Hintzman did not find a difference between
baselines in their Experiment 4, which did not show an
artifactual dissociation. We also did not find a significant
difference in baseline in our experiment that replicated the
results of their Experiment 4. A significant reduction in
baseline for the exclusion test, as compared with the
inclusion test, can be treated as a strong indicator of subjects'
reliance on a generate-recognize strategy (Jacoby, 1996b)
and has the effect of producing an overestimate of recollec-
tion.

Our claim is not that invariance will always be found.
Rather, the finding of invariance relies on the retrieval
strategy used by subjects. Our direct-retrieval instructions
were designed to discourage subjects from using recognition
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memory as a basis for rejecting old words for the exclusion
test. If subjects use a generate-recognize strategy, results
will not show invariance in A computed using the indepen-
dence assumption. Rather, in that case, a redundancy
assumption of the sort made by Jacoby and Hollingshead
(1990) is necessary to dissociate processes.

A pessimistic view is that it is impossible to control
subjects* retrieval strategies in a task as complex as cued
recall using word stems (see Curran & Hintzman, 1995, p.
544). However, gaining such control is a prerequisite to
separating automatic and consciously controlled processes
within a task, which is important for both theoretical and
applied purposes (e.g., Jacoby, Jennings, et a l , 1996). We
see results such as those in Table 1 as a source of optimism
that we have gained a substantial degree of control over
subjects' strategies. The alternative to such optimism is to
believe that estimation bias caused by subjects' partial
reliance on a generate-recognize strategy is delicately
balanced with other sources of estimation bias (not under-
standing exclusion instructions and bias caused by process
correlations) to consistently create an "illusion" of invari-
ance in A. A delicate balance of this sort seems particularly
unlikely because estimation bias caused by partial reliance
on a generate-recognize strategy should increase in magni-
tude when recognition is made easier (increased R)—adding
to, rather than offsetting, supposed estimation bias caused by
correlated processes.

Conclusions

The process-dissociation procedure was developed to
address a widely recognized problem in memory research:
the fact that test performance—and most performance in the
"real world"—reflects the operation of more than one kind
of memory. Since its introduction, the procedure has gener-
ated considerable controversy, much of it centered around
the assumptions underlying use of the procedure. However,
it is important to recognize that many of these assumptions—
such as the functional relation between processes—are not
specific to the process-dissociation procedure but will have
to be addressed by any approach that assumes two (or more)
mnemonic processes or systems. Indeed, although they are
among our most vehement critics, researchers using the
task-dissociation (implicit-explicit) approach face many of
the same problems that we have encountered—problems
such as the functional relationship among processes (or
systems), process correlations, and the fact that functional
relationships may change as a function of task strategy. Few
investigations based on the task-dissociation approach have
addressed these issues, but it seems clear that they cannot be
avoided forever (see the response by Toth, Reingold, &
Jacoby, 1995, to Graf & Komatsu, 1994).

Curran and Hintzman (1995) identified the important
problem that correlations between processes might result in
an underestimation of automatic influences of memory (A).
One can only say might: The magnitude of any measurement
problem produced by correlation cannot be truly assessed
because one must aggregate across something (items or
subjects) to estimate R and A. We agree that correlations
could produce an estimation bias, but we have shown that

such biases will likely be trivially small and not differential
across conditions by an amount necessary to produce
artifactual dissociations. The dissociations observed by
Curran and Hintzman were likely produced by violations of
boundary conditions for using the process-dissociation pro-
cedure rather than by correlated item differences. Floor
effects can result in artifactual dissociations as can subjects'
reliance on a generate-recognize strategy, which produces a
redundancy relation between R and A. The process depen-
dency that characterizes a redundancy relationship is a
causal one (recognition must be preceded by generation) and
does not simply reflect an estimation bias caused by
correlated processes.

Let us end by noting that use of the inclusion-exclusion
procedure to investigate controlled and automatic processes
does give rise to complexities. One has to worry about floor
and ceiling effects. Instructions are also a cause for worry
because the relationship between R and A is partly deter-
mined by a subject's retrieval strategy. This being true is not
reason for abandoning the approach but does encourage the
refinement of procedures and the development of alternative
means of implementing the approach. The particulars of the
inclusion-exclusion procedure are less important to us than
is the rationale underlying the process-dissociation ap-
proach, along with its goal of separating automatic and
controlled processes within a task. Manipulating the relation
between a habit created through training and an event whose
presentation is to be recollected at test serves as an
alternative means of creating in-concert and in-opposition
conditions of the sort required by the process-dissociation
approach (e.g., Hay & Jacoby, 1996). Use of this alternative
method is, in some ways, less problematic and provides
results that agree with those gained from inclusion-
exclusion tests. Procedures are necessarily reliant on under-
lying assumptions and must be used with care to satisfy
boundary conditions. However, concern for the unobserv-
able correlation between processes at the Subject X Item
level should not blind one to the regularity of results
observable in Table 1.

The process-dissociation procedure led us to observe
those regularities, and confirms our belief that the procedure
provides a useful way of separating the influences of
automatic and consciously controlled memory processes. It
is true that there are boundaries that limit the use of the
procedure, but those boundaries are currently being ex-
tended, and we hope that process of extension will continue
for some time.
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OBSERVATIONS

Appendix

Effects of Correlation

495

We describe the derivation of Equation 1. First, we need to relate
correlation to covariance. This is easily done because correlation is
covariance uncorrected for the magnitude of the standard devia-
tions of the correlated variables. That is, as can be found in most
introductory statistics books, covariance is defined in terms of the
correlation and the standard deviations of variables of interest (R
and A):

cov = r * SDR * SDA (Al)

Next, we need some means of relating covariance to the
equations used to estimate R and A. This can be done by noting the
computational formula for covariance [(£/?, * A,)/W] — RA. Sup-
pose we knew R and A for each item for each subject and wanted to
calculate the effect of correlation between R and A at the item level
on the intersection RA estimated by aggregating across items. The
true intersection of R and A could be calculated as the mean of the
products of R and A for each item, (2/?, * Aj)/N. A positive
correlation between R and A at the level of items would result in the
intersection computed from the means aggregated across items
(RA) being larger than the true intersection by an amount that is
equal to covariance. By the computational formula for covariance,
the difference between the intersection estimated from the means
and the true intersection computed using individual items is equal
to covariance (cov); therefore, the true intersection is equal to RA +
cov. Combining this definition of covariance with equations for the
inclusion and exclusion conditions yields a more general form of

those equations:

Inclusion = R + A — (RA + cov)

= R + A-[&Ri*A,)fN] (A2)

Exclusion = A - (RA + cov) = A - [&Rt * At)/N] (A3)

When covariance is zero, these equations are the same as written
earlier because (XRi * Aiflf equals RA. However, when one aggregates
across items to gain estimates and the covariance of/? and A is positive,
as will be the case if there is a positive correlation, the intersection,
(%Ri * Aj)//V, will be larger than RA. This will have no influence on the
estimate of R because the increase is the same for the exclusion test as
for the inclusion test and because recollection is measured as the
difference between performance on the two tests.

However, positive covariance will result in the underestimation
of A. Estimating A as Exclusion/(1 - R) will now yield A —
(RA + cov)l(\ - R) rather than A - RA/(1 - R), These two
equations differ by — covl(\ — R). Thus, the estimate of A will be
smaller by covl(\ — R) than it would be if the correlation of/? and
A were zero.

Combining the definition of covariance in terms of correlation
with the equation for the error in estimation of A produced by
covariance yields:

True A — Estimated A

= covl(\ -R) = SDA!(\ - R) (A4)
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